Московский Государственный Университет имени М.В. Ломоносова

Факультет наук о материалах

Отчет по десятинедельному практикуму

Синтез и исследование замещенных шпинелей Zn_{1-x}Ni_xAl₂O₄, ZnAl_{2-x}Cr_xO₄ и системы сложных оксидов ZnO-NiO

Выполнили: студенты I курса

Иванов Алексей

Козлов Макарий

ТанСиянь

Руководители:

Жиров А.И.

Брылев О.А.

Зыкин М.А.

Григорьева А.В.

Москва, 2017

Оглавление

Введение.	3
Цели:	4
Задачи:	4
Литературный обзор	5
Фазовая диаграмма ZnO-NiO.	5
Кристаллические решетки.	5
Методы синтеза сложных оксидов	5
Шпинели.	6
Закон Вегарда	6
Экспериментальная часть	8
Синтез сложных оксидов состава Zn _{1-x} Ni _x Oметодом	оксалатного
соосаждения.	8
Синтез сложных оксидов.	8
Синтез шпинелиZn _{1-x} Ni _x Al ₂ O _{4.}	10
Синтез шпинели состава ZnAl _{2-x} Cr _x O ₄	11
Обсуждение результатов.	13
Оксидная система.	13
Шпинели.	20
Выводы.	
Благодарности	29
Список использованной литературы:	

Введение.

Предметом исследования 10-недельного практикума являются твердые растворы. Твёрдые растворы — фазы переменного состава, в которых атомы различных элементов расположены в общей кристаллической решётке. Способность образовывать твёрдые растворы свойственна всем кристаллическим твёрдым телам. В большинстве случаев она ограничена узкими пределами концентраций, но известны системы с непрерывным рядом твёрдых растворов.По существу, все кристаллические вещества, считающиеся чистыми, представляют собой твёрдые растворы с очень малым содержанием примесей. В нашей работе была синтезирована и проанализирована система сложных оксидовZnO-NiO и две разнозамещенных шпинели состава Zn_{1-x}Ni_xAl₂O₄ и ZnAl_{2-x}Cr_xO₄. Многие шпинели - важные руды хрома, железа, марганца, титана, цинка; применяются при производстве керамики, огнеупоров, термоустойчивых красок.

Будучи разновидностью ферритов (шпинелевые ферриты), искусственные шпинели лежат в основе многих магнитных материалов и широко используются в приборостроении, радиотехнической и керамической промышленности.

Синтетическую шпинель получают подобно рубину и сапфиру методом Вернейля. Ей придают обычно голубую (сапфировую), зеленовато-голубую (аквамариновую) или зелёную окраску. Искусственный александрит тоже, как правило, представляет собой шпинель. В отличие от природной, синтетическая шпинель имеет спайность, аномальное двупреломление и ярко люминесцирует в рентгеновских лучах.

Цели:

- 1. Получение навыков неорганического синтеза твердых растворов.
- 2. Анализ полученных образцов при помощи методов рентгенофазного анализа.

Задачи:

- 1. Синтезировать систему сложных оксидов состава ZnO-NiO и шпинели состава $Zn_{1-x}Ni_xAl_2O_4$ и ZnAl_{2-x}Cr_xO₄ различными методами.
- 2. Определить зависимость изменения окраски от концентрации иона-заместителя в структурах полученных систем.
- 3. Исследовать истинность полученных шпинелей методом рентгенофазового анализа путем сравнения с литературными данными, исследовать зависимости параметров решетки от концентрации выбранного элемента.
- 4. Проверить выполнение закона Вегарда для полученных систем.
- 5. Сделать вывод об оптимальном варианте синтеза шпинелей.

Литературный обзор. Фазовая диаграмма ZnO-NiO.

Рис. 1: фазовая диаграмма системы ZnO-NiO

Из фазовой диаграммы видно, что растворимость NiO в оксиде цинка незначительна. А растворимость оксида цинка в NiO при 700°C составляет 30%. Можно сделать вывод, будет происхоить образование двух твердых растворов. В дальшейшем под αраствором будет подразумеваться раствор NiO в ZnO, а β-раствором будет называться раствор ZnO в NiO.

Кристаллические решетки.

Ограниченная растворимость оксидов друг в друге может быть объяснена структурами этих оксидов. Дело в том, что оксид никеля имеет кубическую кристаллическую решетку (типа каменной соли), а оксид цинка – гексагональную.

Рис. 2: кристаллическая решетка ZnO

Рис. 3: кристаллическая решетка NiO

Методы синтеза сложных оксидов.

- 1. Прямое спекание оксидов друг с другом.
- 2. Метод оксалатного соосаждения.
- 3. Метод карбонатного соосаждения.

4. Соосаждение и прокаливание гидроксидов.

На выходе предполагалось получить как можно более гомогенную систему, для более простого и точного исследования зависимости свойств системы от концентрации оксида никеля. Очень высокой степени гомогенизации можно добиться путем охлаждения из жидкой фазы, однако оксиды цинка и никеля имеют очень высокие температуры плавления, поэтому получение смесей расплавленых чистых оксидов можно считать невозможным. Однако, добиться достаточной гомогенизации можно при помощи разложения солей цинка и никеля имеющих низкие температуры разложения. Также повысить степень гомогенизации позволяет механическое растирании вещества в ступке после каждого отжига (воздуходувная горелка, печь 900, печь 1200). Оксалаты цинка и никеля имеют сравнительно невысокую температуру разложения, продуктами разложения являются бесцветные и не имеющие запаха угарный и углекислый газы, что однозначно склоняет чашу весов в пользу оксалатного метода.

Шпинели.

Шпинели – смешанные оксиды с общей формулой AB_2O_4 , где A – катион двухвалентного металла (Mg^{2+} , Mn^{2+} , Co^{2+} , Fe^{2+} , Ni^{2+} , B – катион трёхвалентного металла (Al^{3+} , Cr^{3+} , Fe^{3+} , V^{3+} , Mn^{3+}).

Шпинели - системы твердых растворов с широким изоморфизмом катионов A и B; в пределах каждого изоморфного ряда смесимость минералов полная, между членами различных рядов ограниченная. Минерал шпинель – родоначальник всего класса кристаллических структур - смешанный оксид магния и алюминия $MgAl_2O_4$. Строение шпинели можно представить как кубическую плотнейшую упаковку ионов кислорода $O^{2^{-}}$, в тетраэдрических и октаэдрических пустотах которых размещены катионы двухвалентного и трёхвалентного металлов. Состав элементарной ячейки шпинели описывается формулой $Mg_8Al_{16}O_{32}$. На 32 иона кислорода при КПУ приходится 64 тетраэдрических и 32 октаэдрических пустот, но в пространственной группе шпинели существуют эквивалентные позиции только для 8 атомов с тетраэдрической и 16 атомов с октаэдрической координацией.

Закон Вегарда

Закон Вегарда - эмпирическое правило, которое гласит, что существует линейная зависимость при постоянной температуре между параметрами кристаллической решётки сплава и концентрацией отдельных его элементов. Для параметра решетки а кристалла кубической сингонии (к примеру, шпинели вида ZnAl_{2-x}Cr_xO₄) закон принимает вид:

 $a_{\text{ZnAl}(2-x)\text{CrxO4}} = x * a_{\text{ZnCrO4}} + (1 - x) * a_{\text{ZnAl2O4}}$

Где х - содержание кобальта, $a_{ZnAl(2-x)CrxO4}$ – параметр ячейки твердого раствора (сплава), $a_{ZnCrO4}ua_{ZnAl2O4}$ - параметры ячейки веществ с крайним положением замещения. Закон Вегарда справедлив в предположении сходных кристаллических структур для обоих компонентов твердого раствора (сплава). Таким образом, параметры кристаллической решётки твёрдого раствора материалов с одинаковой структурой решётки, могут быть найдены путём линейной интерполяции между параметрами решётки исходных соединений.

Закон Вегарда нужно рассматривать как не слишком строгое обобщение, приложимое к твердым растворам, образованным путем неупорядоченного замещения ионов.

Экспериментальная часть

Синтез сложных оксидов состава Zn_{1-x}Ni_xOметодом оксалатного соосаждения. Получение прекурсоров.

Для синтеза системы сложных оксидов Zn_{1-x}Ni_xO необходимы прекурсоры: оксалат цинка и оксалат никеля. Синтез оксалата цинка был проведен по следующему уравнению реакции:

 $(NH_4)_2C_2O_4 + Zn(NO_3)_2 = 2NH_4NO_3 + ZnC_2O_4\downarrow$

Порошки реагентов были измельчены в ступках и растворены в дистиллированной воде.В результате сливания горячих насыщенных растворов (растворимость оксалата аммония при 25°С – 5.21г в 100 мл, при 80°С – 22.4г в 100 мл, растворимость нитрата цинка при 25°С – 127.4г в 100 мл, при 80°С – 871 г в 100 мл) реагентов, образовался белый, коллоидный раствор, после вакуумного фильтрования которого, было получено белое кристаллическое вещество – оксалат цинка.

Рис. 4,5: оксалат цинка

Полученный прекурсор был исследован методом термического анализа:

На диаграмме два излома. Первый соответствует потере массы при отщеплении воды, второй – при разложении безводного оксалата. Предполагалось получение двухводного оксалата цинка. При этом первая потеря массы должна составлять 20%, и вторая 53% от исходной массы. Это полностью подтверждается диаграммой (погрешность метода 5%).

Двуводный оксалат никеля имелся в наличии.

Синтез сложных оксидов.

По уравнению реакций:

(1-x) $ZnC_2O_4 + xNiC_2O_4 = Zn_{1-x}Ni_xO + CO_2\uparrow + CO\uparrow$

был проведен рассчет масс оксалатов, для синтеза 0,5 г продукта.

Соответствующие рассчеты представлены в таблице:

x, %	М(теор.),	m(ZnC ₂ O ₄ *2H ₂ O),	m(NiC ₂ O ₄ *2H ₂ O),	М(практ.), г	Выход, %
	Γ	Γ	Γ		
5	0,5	1,11	0,06	0,46	92
15	0,5	1,00	0,17	0,42	84
25	0,5	0,89	0,29	0,43	86
35	0,5	0,78	0,40	0,43	86
45	0,5	0,66	0,52	0,44	88

Табл. 1: Массы прекурсоров и выход продукта после отжига на воздуходувной горелке.

Рис. 6: термический анализ оксалата цинка

Рис.7: Zn_{0,65}Ni_{0,35}O

Синтез шпинелиZn_{1-x}Ni_xAl₂O_{4.}

В качестве прекурсоров для синтеза цинк-алюминиевой шпинели замещенной никелем использовались двуводный оксалат цинка ($ZnC_2O_4*2H_2O$), никелевый шенит ((NH_4)₂Ni(SO_4)₂*6H₂O), алюмо-аммонийные квасцы ((NH_4)Al(SO_4)₂*12H₂O).

В результате реакции:

```
(1-x) (NH_4)_2 Zn(SO_4)_2 * 6H_2O + x(NH_4)_2 Ni(SO_4)_2 * 6H_2O + 2 (NH_4)Al(SO_4)_2 * 12H_2O = Zn_1.
```

x(Zn), %	x(Ni), %	x(Al), %	М(теор.), г	m((NH ₄) ₂ Zn(SO ₄) ₂ * 6H ₂ O), Γ	m((NH ₄) ₂ Ni(SO ₄) ₂ *6H2O), Γ	$m((NH_4)Al(SO_4)_2*$ 12H ₂ O), Γ	М(практ.), г	Выход, %
90	10	100	0,5	1,16	0,13	1,46	0,43	86
80	20	100	0,5	1,04	0,25	1,46	0,38	76
70	30	100	0,5	0,91	0,38	1,47	0,41	82
60	40	100	0,5	0,78	0,51	1,47	0,42	84
50	50	100	0,5	0,66	0,65	1,48	0,36	72

 $_{x}Ni_{x}Al_{2}O_{4} + 8 SO_{2} + 6 NH_{3} + 36 H_{2}O$

Табл. 2: Массы прекурсоров и выход продукта после отжига на воздуходувной горелке.

Получалась замещенная цинк-алюминимевая шпинель с различной концентрацией никеля. Нами были получены шпинели с мольной долей никеля 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%.

Была произведена попытка замещения алюминия на никель. То есть синтезированы шпинели состава (100+10%, 100+20%)

40	60	100	0,5	0,53	0,78	1,49	0,39	78
30	70	100	0,5	0,40	0,91	1,49	0,41	82
20	80	100	0,5	0,27	1,05	1,50	0,38	76
10	90	100	0,5	0,13	1,18	1,51	0,4	80
0	1	100	0,5	0	1,29	1,33	0,46	92
0	1,1	90	0,5	0	1,39	1,16	0,39	78
0	1,2	80	0,5	0	1,48	1,00	0,45	90

Синтез шпинели состава ZnAl_{2-x}Cr_xO₄.

В качестве прекурсоров для синтеза цинк-алюминиевой шпинели замещенной хромом использовались двуводный оксалат цинка ($ZnC_2O_4*2H_2O$), девятиводный нитрат алюминия($Al(NO_3)_3*9H_2O$), и дихромат аммония($(NH_4)_2Cr_2O_7$).

В результате реакции:

 $2ZnC_{2}O_{4}*2H_{2}O + (4-2x)Al(NO_{3})_{3}*9H_{2}O + x(NH_{4})_{2}Cr_{2}O_{7} = 2 ZnAl_{2-x}Cr_{x}O_{4} + (12-6x)NO_{2} + xN_{2}+2CO_{2}+2CO + (18-9x)O_{2} + (40-14x)H_{2}O$

x(Zn), %	x(Ni), %	x(Al), %	М(теор.), г	m(ZnC ₂ O ₄ *2H ₂ O), Γ	m(Al(NO ₃) ₃ *9H ₂ O), г	$ \begin{array}{l} m((\mathbf{NH}_4)_2\mathbf{Cr}_2\mathbf{O}_7)),\\ \Gamma \end{array} $	М(практ.), г	Выход, %
100	180	20	0,5	0,50	1,79	0,07	0,48	96
100	160	40	0,5	0,49	1,55	0,13	0,5	100
100	140	60	0,5	0,48	1,32	0,19	0,47	94
100	120	80	0,5	0,47	1,11	0,25	0,48	96
100	100	100	0,5	0,45	0,90	0,30	0,49	98
100	80	120	0,5	0,44	0,70	0,35	0,5	100
100	60	140	0,5	0,43	0,52	0,40	0,47	94
100	40	160	0,5	0,42	0,34	0,45	0,48	96
100	20	180	0,5	0,41	0,16	0,50	0,49	98

Табл. 3: Массы прекурсоров и выход продукта после отжига на воздуходувной горелке.

Получалась замещенная цинк-алюминимевая шпинель с различной концентрацией хрома. Нами были получены шпинели с мольной долей хрома 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%.

Рассчеты, а также, выходы основного продукта реакции приведены в таблице:

Рис. 8,9: хромалюминиевая шпинель после отжига на возд. горелке

Обсуждение результатов.

Оксидная система.

После обжига на воздуходувной горелке вещество было проанализировано методом рентгенофазового анализа, результаты представлены ниже:

Содержание никеля составляет всего 5%, из-за этого фазовый состав полученного вещества практически совпадает с фазовым составом ZnO.

Zn_{0,85}Ni_{0,15}O

Содержание никеля возрастает до 15% и на диаграмме появляются пики, соответствующие оксиду никеля. Система двухфазная так как растворимость оксидов друг в друге ограниченна.

При замещении 25% пики оксида никеля становятся более интенсивными.

При замещении 45% наблюдается уже довольно сильный сдвиг пиков оксида никеля. Значит начало происходить образование бетта-раствора.

Затем серии образцов подвергались обжигу в печи при 900°С и 1200°С, а так же последовательному обжигу при 900°С, а затем 1200°С. Массы образцов не изменялись после обжига или менялись незначительно (потеря массы составляла 0,01 г).

Интересно отметить изменение окраски образцов:

Рис. 10: изменение окраски оксидной системы

До отжига в печи с увеличением мольной доли никеля, цвет изменялся от светлосерого к почти черному.

После отжига в печи цвет изменялся с оливкового, сначала к грязно-зеленому, а затем коричневатому.

Это связано с тем, что после отжига в печи происходит образование твердых растворов, в результате чего никель встраивается в октаэдрические пустоты.

Наиболее показательными являются рентгенограммы полученные после последовательного обжига.

Zn_{0,95}Ni_{0,05}O

Пики оксида цинка немного сдвинуты. Присутствует фаза NiO. Однако пики NiO тоже сдвинуты, это говорит о том, что произошло образование β-раствора.

Система двухфазная: α-раствор, β-раствор.

Zn_{0,75}Ni_{0,25}O

$Zn_{0,55}Ni_{0,45}O$

С увеличением процента замещения наблюдается все больший сдвиг пиков оксида никеля. Это происходит из-за образования бетта-раствора. Пики оксида цинка также сдвинуты, но при этом гораздо меньше. Таким образом в смеси присутствует альфараствор, но уже в меньших количествах.

Для наглядости все рентгенограммы показаны на одном графике:

Для каждого образца прошедшего последовательный отжиг был построен график зависимости параметра а элементарной ячейки от x (x – мольная доля никеля).

Для альфа-раствора зависимость имеет вид:

Для бета-раствора зависимость имеет вид:

Графики показывают что в системе ZnO-NiO наблюдаются положительные отклонения от закона Вегарда. По литературным данным: положительные отклонения указывают на наличие областей несмешиваемости внутри области гомогенности данной системы.

Шпинели.

Цинк-алюминиевая шпинель замещенная никелем.

На иллюстрации можно проследить за изменением цвета образцов. Видно, что окраска меняется от жёлтого к зелёному и при этом становится более насыщенной. Согласно РФА, образцы с замещением никеля 10-30% получились трёхфазными (фаза ZnO, NiOu ZnAl₂O₄. Образцы с замещением никеля 40-120% получилиьс двухфазными (фаза NiOu фаза ZnAl₂O₄). Можно сделать вывод, что замещение происходило не полностью, и никель замещался как и в октаэдрическое положение, так и в тетраэдрическое. Закон вегарда для данной серии образцов также вполне хорошо выполнялся. Можно отметить, что параметры решётки уменьшались при увеличении замещения никелем, так как никель имеет меньший радиус, чем цинк. В образце 12 можно наблюдать увеличение параметра решёкти, так как Niзаменяет уже Al, а радиус Niбoльшe, чем радиус Al.

Рис. 11: изменение окраски для замещенной никелевой шпинели

$Zn_{1-x}Ni_xAl_2O_4$:

Цинк алюминиевая шпинель замещенная хромом.

При большем замещении окраска становится серой. При малом замещении хромом виден розовый цвет. Согласно РФА наши образцы получилось однофазными и при увеличении количества хрома можно проследаить сдвиг рефлексов в область больших углов, что означает что параметр кристаллической решётки увелчивается. На последрвательных рфа виден сдвиг от кристаллической решетки ZnAl₂O₄к кристаллической решётке ZnCr₂O₄. Для данной серии образцов очень хорошо выполняется закон Вегарда, что также можно увидеть на графике.

Рис. 12: изменение окраски для замещенной хромом шпинели

ZnAl_{2-x}Cr_xO4

Выводы.

.

1. Были синтезированы различными методами шпинели состава $Zn_{1-x}Ni_xAl_2O_4$, $ZnAl_{2-x}Cr_xO_4$ и система сложных оксидов ZnO-NiO (всего 27 образцов, с учетом различного обжига 87 образцов).

2. Приобретены навыки работы с программой WinXPow и обработки результатов

анализов с ее помощью (нахождение подходящих соединений, уточнение положения

пиков, расчет параметров элементарной ячейки);

3. Все использованные методы признаны оптимальными для синтеза шпинелей заданного состава.

4. При увеличении доли допирующего агента увеличивается интенсивность окраски;

5. Для всех исследованных систем был построен график зависимости параметра элементарной ячейки от мольной доли допирующего агента. Подтверждены отклонения от закона Вегарда с системе ZnO-NiO, описывающиеся в литературных данных.

Благодарности.

Мы хотим выразить искреннюю благодарность:

• Жирову Александру Ивановичу за полезные указания по работе и грамотное руководство.

• Лебедеву Василию Александровичу за проведение рассказа об РФА.

• Дорофееву Сергею Геннадьевичу за отжиг образцов в печи.

• Брылёву Олегу Александровичу, Зыкину Милаилу Александровичу и Григорьевой Анастасии Вадимовне за помощь в проведении исследований.

• Береговой Галине Давыдовне за помощь в практикуме и предоставление оборудования и реактивов.

Список использованной литературы:

- 1. Вест А. Химия твердого тела. Теория и приложения: В 2-х ч. Ч. 1: Пер. с англ. М.:
- 1. Мир, 1988. 559 с.,
- 2. Никольский Б. П. Справочник химика. Рипол Классик, 2014.
- 3. Motloung S. V. et al. The Effect of Annealing Time on the Structural and Optical Properties of ZnAl2O4: 0.01% Cr3+ Nanophosphor Prepared via the Sol–Gel Method //Journal of Electronic Materials. 2017. C. 1-9.
- 4. Отчеты студентов 1 курса ФНМ по задачам 10-и недельного практикума.